Interpolation multivariée - fr.LinkFang.org

Interpolation multivariée


En analyse numérique, l'interpolation multivariée ou l'interpolation spatiale désigne l'interpolation numérique de fonctions de plus d'une variable.

Le problème est similaire à celui de l'interpolation polynomiale sur un intervalle réel : on connait les valeurs d'une fonction à interpoler aux points \({\displaystyle (x_{i},y_{i},z_{i},\dots )}\) et l'objectif consiste à évaluer la valeur de la fonction en des points \({\displaystyle (x,y,z,\dots )}\).

L'interpolation multivariée est notamment utilisée en géostatistique, où elle est utilisée pour reconstruire les valeurs d'une variable régionalisée sur un domaine à partir d'échantillons connus en un nombre limité de points. Par exemple en météorologie, il s'agit de l'estimation de valeurs intermédiaires inconnues à partir de valeurs discrètes connues d'une variable dépendante, comme la température, sur une carte météorologique[1].

Sommaire

Grille régulière


Pour des fonctions connues sur une grille régulière (avec des intervalles prédéterminés, non nécessairement équidistants), les méthodes suivantes sont applicables.

Toute dimension

2 dimensions

Le redimensionnement d'image est l'application de l'interpolation dans le traitement d'images.

Trois méthodes sont ici appliquées sur un ensemble de 4x4 points.

Voir aussi les points de Padua pour l'interpolation polynomiale de deux variables.

3 dimensions

Produit tensoriel en dimension N

Les splines de Catmull-Rom peuvent être facilement généralisées en dimension quelconque. Les splines cubiques d'Hermite donnent \({\displaystyle \mathrm {CINT} _{x}(f_{-1},f_{0},f_{1},f_{2})=\mathbf {b} (x)\cdot \left(f_{-1}f_{0}f_{1}f_{2}\right)}\) pour un 4-vecteur \({\displaystyle \mathbf {b} (x)}\) donné, qui est donc une fonction de x, où \({\displaystyle f_{j}}\) est la valeur en \({\displaystyle j}\) de la fonction à interpoler.

En réécrivant cette approximation sous la forme

\({\displaystyle \mathrm {CR} (x)=\sum _{i=-1}^{2}f_{i}b_{i}(x)}\)

cette formule peut être généralisée en dimension N[2]

\({\displaystyle \mathrm {CR} (x_{1},\dots ,x_{N})=\sum _{i_{1},\dots ,i_{N}=-1}^{2}f_{i_{1}\dots i_{N}}\prod _{j=1}^{N}b_{i_{j}}(x_{j})}\)

On remarque que des généralisations similaires peuvent être faites pour d'autres types d'interpolation par splines, dont les splines d'Hermite. En termes d'efficacité, la formule générale peut en effet être calculée comme une composition successive d'opérations de type CINT pour tout type de produit tensoriel de splines, comme dans le cas de l'interpolation tricubique. Cependant, il demeure que s'il y a n termes dans le terme en CR de la somme en dimension 1, il y aura alors nN termes dans la somme en dimension N.

Grille irrégulière (données éparses)


Les méthodes définies pour des données éparses sur une grille irrégulière peuvent être appliquées sur une grille régulière, ce qui permet de revenir à un cas connu.

Utilisations


Interpolation et un lissage à deux dimensions

Notes et références


  1. Organisation météorologique mondiale, « Interpolation » , sur Eumetcal (consulté le 16 novembre 2013)
  2. Two hierarchies of spline interpolations. Practical algorithms for multivariate higher order splines

Liens externes











Catégories: Interpolation numérique | Interpolation spatiale | Géostatistique




Information à partir de: 09.12.2020 12:00:27 CET

Source: Wikipedia (Auteurs [Histoire])    Licence: CC-by-sa-3.0

Changements: Toutes les images et la plupart des éléments de conception liés à celles-ci ont été supprimés. Certaines icônes ont été remplacées par FontAwesome-Icons. Certains modèles ont été supprimés (comme «l’élargissement de l’article doit être développé) ou attribués (comme les« notes »). Les classes CSS ont été supprimées ou harmonisées.
Les liens spécifiques à Wikipedia qui ne mènent pas à un article ou à une catégorie (tels que «Liens rouges», «Liens vers la page de modification», «Liens vers des portails») ont été supprimés. Chaque lien externe a une icône FontAwesome supplémentaire. Outre quelques modifications mineures dans la conception, le conteneur de supports, les cartes, les boîtes de navigation, les versions parlées et les microformats géographiques ont été supprimés.

Notez s'il vous plaît: Étant donné que le contenu donné est automatiquement extrait de Wikipedia à un moment donné, une vérification manuelle était et n'est pas possible. Par conséquent, LinkFang.org ne garantit pas l'exactitude ni l'actualité du contenu acquis. S'il existe une information erronée pour le moment ou dont l'affichage est inexact, n'hésitez pas à Contactez-nous: l'e-mail.
Voir également: mentions légales & charte de confidentialité.