Protéine chaperon - fr.LinkFang.org

Protéine chaperon

Une protéine chaperon[1] est une protéine dont la fonction est d'assister d'autres protéines dans leur maturation, en évitant la formation d'agrégats via les domaines hydrophobes présents sur leur surface lors de leur repliement tridimensionnel[2]. Beaucoup de protéines chaperons sont des protéines de choc thermique (Heat shock proteins: Hsp), c'est-à-dire des protéines exprimées en réponse à des variations de température, ou d'autres types de stress cellulaire, tel que le stress oxydant.

Sommaire

Histoire


La recherche sur les chaperons a une longue histoire[3]. Le terme "chaperon moléculaire" est apparu pour la première fois dans la littérature en 1978, et a été inventé par Ron Laskey pour décrire la capacité d'une protéine nucléaire appelée nucléoplasmine à empêcher l'agrégation des protéines histones repliées avec l'ADN pendant l'assemblage des nucléosomes[4]. Le terme a été ensuite étendu par R. John Ellis en 1987 pour décrire les protéines qui ont servi de médiateur dans l'assemblage post-traductionnel de complexes protéiques[5]. En 1988, on s'est rendu compte que des protéines similaires ont servi de médiateur dans les procaryotes et les eucaryotes[6]. Les détails de ce processus ont été déterminés en 1989 par Pierre Goloubinoff dans le laboratoire de George H. Lorimer, lorsque le repliement protéique dépendant de l'ATP a été démontré in vitro[7].

Structure


La structure des protéines est sensible à la chaleur, elles se dénaturent et perdent leurs fonctions biologiques. Le rôle des protéines chaperons est de prévenir les dommages potentiellement causés par une perte de fonction protéique due à un mauvais repliement tridimensionnel. D'autres protéines chaperons sont impliquées dans le repliement de protéines néosynthétisées alors qu'elles sont extraites du ribosome.

Fonctionnement général


Pour fonctionner les protéines chaperons utilisent de l'ATP.

Contextualisation

Pour les protéines, l'obtention de leur état final est une étape clef puisqu'il définit leurs propriétés fonctionnelles et leurs activités.

Mode d'action

Les protéines chaperon aident au repliement des protéines en modifiant leur conformation . Elles reconnaissent les protéines par leur surface hydrophobe (située en temps normal au centre des protéines mais à l'extérieur dans ce cas), les masquent et, grâce à leur flexibilité, modifient leur structure en mettant les zones hydrophiles au contact de l'eau.

Différentes Protéines Chaperons


Les chaperonines

Les chaperonines constituent une famille de protéines chaperons[2]. Elles encapsulent leur protéine substrat et sont caractérisées par une structure en double anneau. On les trouve chez les procaryotes, dans le cytosol des eucaryotes et dans les mitochondries.

Autre protéines chaperons

D'autres types de protéines chaperons sont impliquées dans le transport transmembranaire, par exemple dans les mitochondries et le réticulum endoplasmique. De nouvelles fonctions des protéines chaperons sont continuellement découvertes, comme l'assistance à la dégradation protéique (assurant leur élimination quand elles sont anormales)[8] et la réponse aux maladies liées à l'agrégation protéique (voir prion).

Nomenclature et exemples de protéines chaperons chez les procaryotes

Il existe de nombreuses familles de protéines chaperons, dont les modes d'action sont variés. Chez les procaryotes comme Escherichia coli, beaucoup de ces protéines sont fortement exprimées dans des conditions de stress, par exemple à la suite d'une exposition à de hautes températures. Pour cette raison le terme historique de protéine de choc thermique (Heat-Shock Proteins ou Hsp) a tout d'abord désigné les protéines chaperons.

Références

  1. On trouve également souvent la forme « protéine chaperonne ».
  2. a et b Michel Morange, Protéines chaperons , médecine/sciences 2000, n°5, vol. 16, mai 2000
  3. R. J. Ellis, « Discovery of molecular chaperones », Cell Stress & Chaperones, vol. 1, no 3,‎ , p. 155–160 (ISSN 1355-8145 , PMID 9222600 , PMCID PMC248474 , lire en ligne , consulté le 31 août 2018)
  4. R. A. Laskey, B. M. Honda, A. D. Mills et J. T. Finch, « Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA », Nature, vol. 275, no 5679,‎ , p. 416–420 (ISSN 0028-0836 , PMID 692721 , lire en ligne , consulté le 31 août 2018)
  5. J. Ellis, « Proteins as molecular chaperones », Nature, vol. 328, no 6129,‎ 1987 jul 30-aug 5, p. 378–379 (ISSN 0028-0836 , PMID 3112578 , DOI 10.1038/328378a0 , lire en ligne , consulté le 31 août 2018)
  6. S. M. Hemmingsen, C. Woolford, S. M. van der Vies et K. Tilly, « Homologous plant and bacterial proteins chaperone oligomeric protein assembly », Nature, vol. 333, no 6171,‎ , p. 330–334 (ISSN 0028-0836 , PMID 2897629 , DOI 10.1038/333330a0 , lire en ligne , consulté le 31 août 2018)
  7. P. Goloubinoff, J. T. Christeller, A. A. Gatenby et G. H. Lorimer, « Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfoleded state depends on two chaperonin proteins and Mg-ATP », Nature, vol. 342, no 6252,‎ 1989 dec 21-28, p. 884–889 (ISSN 0028-0836 , PMID 10532860 , DOI 10.1038/342884a0 , lire en ligne , consulté le 31 août 2018)
  8. (en) Sarah Hanzén, Katarina Vielfort, Junsheng Yang, Friederike Roger, Veronica Andersson, Sara Zamarbide-Forés, Rebecca Andersson, Lisa Malm, Gael Palais, Benoît Biteau, Beidong Liu, Michel B. Toledano, Mikael Molin, Thomas Nyström, « Lifespan Control by Redox-Dependent Recruitment of Chaperones to Misfolded Proteins », Cell,‎ (DOI 10.1016/j.cell.2016.05.006 )

Voir aussi

Sur les autres projets Wikimedia :




Catégories: Protéine



Source: Wikipedia - https://fr.wikipedia.org/wiki/Protéine chaperon (Auteurs [Histoire])    Licence: CC-by-sa-3.0

Changements: Toutes les images et la plupart des éléments de conception liés à celles-ci ont été supprimés. Certaines icônes ont été remplacées par FontAwesome-Icons. Certains modèles ont été supprimés (comme «l’élargissement de l’article doit être développé) ou attribués (comme les« notes »). Les classes CSS ont été supprimées ou harmonisées.
Les liens spécifiques à Wikipedia qui ne mènent pas à un article ou à une catégorie (tels que «Liens rouges», «Liens vers la page de modification», «Liens vers des portails») ont été supprimés. Chaque lien externe a une icône FontAwesome supplémentaire. Outre quelques modifications mineures dans la conception, le conteneur de supports, les cartes, les boîtes de navigation, les versions parlées et les microformats géographiques ont été supprimés.


Information à partir de: 29.10.2019 02:45:46 CET - Notez s'il vous plaît: Étant donné que le contenu donné est automatiquement extrait de Wikipedia à un moment donné, une vérification manuelle était et n'est pas possible. Par conséquent, LinkFang.org ne garantit pas l'exactitude ni l'actualité du contenu acquis. S'il existe une information erronée pour le moment ou dont l'affichage est inexact, n'hésitez pas à Contactez-nous: l'e-mail.
Voir également: mentions légales & charte de confidentialité.