Rectangle


En géométrie, un rectangle est un quadrilatère dont les quatre angles sont droits.

Sommaire

Définition et propriétés


Un quadrilatère est un polygone (donc une figure plane) constitué de quatre points (appelés sommets) et de quatre segments (ou côtés) liant ces sommets deux à deux de manière à délimiter un contour fermé.

Définition — Un rectangle est un quadrilatère qui possède quatre angles droits.

Démontrer qu'un quadrilatère est un rectangle

Différentes propriétés caractéristiques permettent d'affirmer qu'un quadrilatère est un rectangle.

Il suffit qu'un quadrilatère possède trois angles droits pour être un rectangle.

Tout quadrilatère équiangle (c'est-à-dire dont les quatre angles sont égaux) est un rectangle.

Si un quadrilatère est un parallélogramme, alors il est un rectangle si l'une des propriétés suivantes est vérifiée :

Propriétés

Un rectangle est un cas particulier de parallélogramme, donc :

Il possède des propriétés supplémentaires :

Tout rectangle peut servir à constituer un pavage du plan. Cela signifie qu'il est possible, avec des rectangles identiques, de recouvrir tout le plan sans superposer deux rectangles. Des droites perpendiculaires partagent le plan en zones rectangulaires.

Mesures

Périmètre 2 × (a + b)
Aire a × b
Diagonale a2 + b2

Les côtés d'un rectangle étant deux à deux de même longueur a et b, il est d'usage d'appeler dimensions du rectangle ces deux nombres. Le plus grand est la longueur du rectangle, le plus petit sa largeur.

Un rectangle de côtés a et b possède une aire égale à a × b, et un périmètre de 2 × (a + b). La somme a + b est parfois appelée demi-périmètre du rectangle.

L'application du théorème de Pythagore permet de constater que les diagonales du rectangle sont égales et mesurent \({\displaystyle {\sqrt {a^{2}+b^{2}}}.}\)

Ces mesures sont résumées dans le tableau ci-contre.

Deux rectangles qui ont même longueur a et même largeur b sont isométriques. Cela signifie qu'ils sont superposables : l'un des deux peut être transformé en l'autre par une succession de translations, rotations ou retournements. Le quotient a/b est appelé format du rectangle. Tous les rectangles de formats égaux sont semblables : il existe un agrandissement (ou une réduction) permettant de passer de l'un à l'autre. Autrement dit, ils ont « la même forme ». Comme la longueur est supérieure ou égale à la largeur, le format est un nombre supérieur ou égal à 1. Un format égal à 1 est caractéristique d'un carré. Plus le format est grand, plus le rectangle est « allongé ».

Rectangles remarquables


Carré

Un carré est un rectangle particulier dont les quatre côtés ont la même longueur.

Rectangle d'or

Un rectangle d'or est un rectangle dont le rapport entre la longueur et la largeur est égal au nombre d'or.

Format d'un rectangle

Voir format A4 et divers formats d'écran de télévision et d'ordinateur.

Une illustration de la notion de distance de Hausdorff


C'est ce qu'offre dans le cadre de la géométrie élémentaire le rectangle[1]:

Soit R un rectangle de largeur b et de longueur a. Alors la distance de Hausdorff entre R et sa frontière (topologie) est égale à b/2. Elle est réalisée pour tout KL où K est un point d'un segment de longueur a-b inclus dans la médiane relative à la largeur et L le projeté orthogonal de K sur une longueur du rectangle. Cette distance est utile pour calculer la distance de Hausdorff entre deux itérés successifs du tapis de Sierpinski associé à un rectangle.[réf. souhaitée]

  1. (en) Michael F.Barnsley, Fractals everywhere, , 531 p. (ISBN 978-0-12-079069-2 et 0-12-079069-6, lire en ligne ), exercice 6.8 p.30

Annexes


Sur les autres projets Wikimedia :








Catégories: Quadrilatère




Information à partir de: 17.10.2021 10:51:45 CEST

Source: Wikipedia (Auteurs [Histoire])    Licence: CC-BY-SA-3.0

Changements: Toutes les images et la plupart des éléments de conception liés à celles-ci ont été supprimés. Certaines icônes ont été remplacées par FontAwesome-Icons. Certains modèles ont été supprimés (comme «l’élargissement de l’article doit être développé) ou attribués (comme les« notes »). Les classes CSS ont été supprimées ou harmonisées.
Les liens spécifiques à Wikipedia qui ne mènent pas à un article ou à une catégorie (tels que «Liens rouges», «Liens vers la page de modification», «Liens vers des portails») ont été supprimés. Chaque lien externe a une icône FontAwesome supplémentaire. Outre quelques modifications mineures dans la conception, le conteneur de supports, les cartes, les boîtes de navigation, les versions parlées et les microformats géographiques ont été supprimés.

Notez s'il vous plaît: Étant donné que le contenu donné est automatiquement extrait de Wikipedia à un moment donné, une vérification manuelle était et n'est pas possible. Par conséquent, LinkFang.org ne garantit pas l'exactitude ni l'actualité du contenu acquis. S'il existe une information erronée pour le moment ou dont l'affichage est inexact, n'hésitez pas à Contactez-nous: l'e-mail.
Voir également: mentions légales & charte de confidentialité.